
Data-Driven Design:
Leveraging a custom CPython
data model for high-performance
microprocessor design.

R. Taggart, N. Hieter, K. Kalafala
IBM Electronic Design Automation (EDA)

30 April 2022

Objectives

2

I.
How to build a
microprocessor:
a Big Data
Problem

II.
An efficient
CPython data
model

III.
Using Python for
data analysis

IV.
Lessons learned & Wrap-up

33

History of Transistor Count in Microprocessors
Moore’s law: transistor count doubles every two years

Design automation tools are required to
build microprocessors! Source: wikipedia.org/en/transistor_count

http://wikipedia.org/en/transistor_count

44

History of Transistor Count in Microprocessors
Moore’s law: transistor count doubles every two years

Design automation tools are required to
build microprocessors! Source: wikipedia.org/en/transistor_count

US Roadway
System
129K intersections

http://wikipedia.org/en/transistor_count

55

History of Transistor Count in Microprocessors
Moore’s law: transistor count doubles every two years

Design automation tools are required to
build microprocessors! Source: wikipedia.org/en/transistor_count

Human Brain:
 86B neurons
160T synapses

Facebook (2021)
2.1B active users

US Roadway
System
129K intersections

http://wikipedia.org/en/transistor_count

66

History of Transistor Count in Microprocessors
Moore’s law: transistor count doubles every two years

Human Brain:
 86B neurons
160T synapses

IBM Telum (2022)
22B transistors
114B vias
17mi wire
> 5 GHz

Facebook (2021)
2.1B active users

US Roadway
System
129K intersections

Design automation tools are required to
build microprocessors! Source: wikipedia.org/en/transistor_count

http://wikipedia.org/en/transistor_count

77

History of Transistor Count in Microprocessors
Moore’s law: transistor count doubles every two years

Human Brain:
 86B neurons
160T synapses

IBM Telum (2022)
22B transistors
114B vias
17mi wire
> 5 GHz

Facebook (2021)
2.1B active users

US Roadway
System
129K intersections

Design automation tools are required to
build microprocessors! Source: wikipedia.org/en/transistor_count

http://wikipedia.org/en/transistor_count

Common Design Tasks

8

Define
Microarchitecture

Logic
Description

Logic
Synthesis

Place &
Route

A + B + Ci
=> S, Co

Microprocessor

Design Optimization: An NP-Hard Problem

9

Define
Microarchitecture

Logic
Description

Logic
Synthesis

Place &
Route

Timing
Analysis

Power
Analysis

Custom
Circuits

A + B + Ci
=> S, Co

Microprocessor

The Problem – A haystack of design data

High-performance microprocessors
are complicated devices.
• Processor design is an arduous and iterative

process.

• Design automation is not simply “one and done.”

• Questions are asked between each iteration:

1. What happened?

2. Why did it happen?

3. How do we improve?

10

Synthesis
& Analysis

Pile of design data

?
Ask questions

Make Changes

Iterative
Design

The Problem – A haystack of design data

High-performance microprocessors
are complicated devices.
• Processor designs are separated into hierarchical

components

• Each of these are analyzed separately and then
stitched back together

11

2 Chips x 8 Cores x 9 Continents
= A LOT OF DATA (41 GB*)

*sum of size of compressed DD files on disk

IBM Telum Processor

Objectives

12

I.
How to build a
microprocessor:
a Big Data
Problem

II.
An efficient
CPython data
model

III.
Using Python for
data analysis

IV.
Lessons learned & Wrap-up

13

Design editor and
configuration cockpit

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Key Dimensions
1. Managing design

versions
2. Hierarchical

components
3. Access to design and

derived data
4. Team interlock and

collaboration

14

EDA Application Layers

Distributed Clustered File System

Design editor and configuration cockpit

Distributed Batch
Job Scheduler

RedHat Enterprise Linux
(RHEL) OS x86 | POWER

Logic

Asserts

Spice

Parms

Optimization
Engines

Analysis
Engines

15

EDA Application Layers

Distributed Clustered File System

Synthesis Placer Router

Design editor and configuration cockpit

Sign-Off

Static Timing Dynamic Power Congestion Simulator

Distributed Batch
Job Scheduler

RedHat Enterprise Linux
(RHEL) OS x86 | POWER

Logic

Asserts

Spice

Parms

Design
Data

Optimization
Engines

Analysis
Engines

Integrated Shell Interpreter Platform

16

EDA Application Layers

Distributed Clustered File System

Logic
Data Model

Parasitics
subsystem

Voltage
subsystem

Timing
Data Model

Power
Data Model

Synthesis Placer Router

M
et

ho
do

lo
gy

Design editor and configuration cockpit

Sign-Off

Static Timing Dynamic Power Congestion Simulator

C++ Nutsh Tcl Perl Python

Distributed Batch
Job Scheduler

RedHat Enterprise Linux
(RHEL) OS x86 | POWER

Logic

Asserts

Spice

Parms

Design
Data

Optimization
Engines

Analysis
Engines

Integrated Shell Interpreter Platform

17

EDA Application Layers

Distributed Batch
Job Scheduler

RedHat Enterprise Linux
(RHEL) OS x86 | POWER

Distributed Clustered File System

C++ Nutsh Tcl Perl Python

Logic
Data Model

Parasitics
subsystem

Voltage
subsystem

Timing
Data Model

Power
Data Model

Static Timing Dynamic Power Congestion Simulator

Synthesis Placer Router

M
et

ho
do

lo
gy

Design editor and configuration cockpit

Sign-Off

DD .dd

Logfile
Logic

Asserts

Spice

Parms

EDA Application Layers

Design Data (DD): A CPython binary data model and API

18

Floorplan forcesPlacement Density

Leakage DensitySignal Graph

Logical “Netlist”

Routing Congestion

Placement & Wires

DD is a read-only, self-contained, binary file database

Timing

19

Design Data (DD): A CPython binary data model and API

Data Models

Optimization

Analysis

EDA
Application

Cockpit

16 CPU • 600 GB • 8 hrs

Drawbacks

• Maintain custom Python objects
and iterators

• Extra layer creates additional
complexity and maintenance.

• Execution outside of Global
Interpreter Lock (GIL)

Benefits

• Smaller memory footprint and
faster compute performance

• Custom memory management
and object initialization

• Multithreading

• Support multiple execution
environments

20

Design Data (DD): A CPython binary data model and API

Data Models

Optimization

Analysis

EDA
Application

DD C++ library
Context • Box • Pin • Net

read(); write();
trace_critical_path(); x(); y(); z();

.dd
699MB

Cockpit

16 CPU • 600 GB • 8 hrs

21

Design Data (DD): A CPython binary data model and API

Data Models

Optimization

Analysis

EDA
Application

DD C++ library
Context • Box • Pin • Net

read(); write();
trace_critical_path(); x(); y(); z();

.dd
699MB

Cockpit

Python
Interpreter

Jupyter
IPython

Jupyter
Notebook

Custom
Scripts

CPython Wrapper Types
Box • Pin • Net

DD
Server

Aggregate
Metrics
Reports

Binary

C++

CPython

Python

Post-Analysis lib

1 CPU • 16 GB • 4m 24s16 CPU • 600 GB • 8 hrs

Drawbacks

• Maintain custom Python objects
and iterators

• Extra layer creates additional
complexity and maintenance.

• Execution outside of Global
Interpreter Lock (GIL)

Benefits

• Smaller memory footprint and
faster compute performance

• Custom memory management
and object initialization

• Multithreading

• Support multiple execution
environments

Python vs. C++
CPython provides the best of both worlds!

Use Python packages for data
analysis and management:

22

Complete graph data
model performance

• pandas (DataFrame)

• matplotlib (pyplot)

• websockets & asyncio

• flask (web server)

• tensorflow

• scikit-learn

• DB connectors

• PIL (ImageDraw)

• jupyter

Create a complete graph of:
 10,000 vertices
 49.99 M edges

Python: 6 min, 8.1 GB
C++: 3.45 sec, 1.2 GB

Python
• Rapid App Development

(i.e., fast prototyping)
• Dynamic and flexible
• Large community for package

development and support
• Support C++ integrations for

performance

C++
• Fast and memory efficient
• Strong typing
• Multi-threading

Objectives

23

I.
How to build a
microprocessor:
a Big Data
Problem

II.
An efficient
CPython data
model

III.
Using Python for
data analysis

IV.
Lessons learned & Wrap-up

Use Models

Users and developers may
access data in whichever
form helps them accomplish
their current task most
effectively.

24

Rare TasksCommon Tasks

Operational
Metrics

Visual
Discovery

Visual
Exploration

Custom
Experiments

24

Use C++ extension modules for
runtime performance

25

Goal: Form a mental model of the
“whole picture”

Time

import flask, flask_restful, pandas
class TakedownPathDeltas(flask_restful.Resource):
 def get(self, args):
 hists = dict()
 for run_id in self.get_runs_list(args):
 run_df = DataFrame(db_conn.query(
 f'SELECT slack FROM Cache_{run_id};'))
 bins = pandas.cut(run['slack'], self.bins)
 hists[run_id] = run_df.groupby(bins)[‘slack’]
 .count().to_dict()
 return hists

app = flask.Flask(!"name!")
api = flask_restful.Api()
api.add_resource(TakedownPathDeltas,
 ‘/api/takedown/path_deltas')

Track progress over time
via a flask web server and pandas

Full Hierarchical Summary
via a websocket server

26

import asyncio, websockets
def aggregate_path_data(name):
 path_d = defaultdict(float)
 tpt = ctx.root_def().locate_pin(name)
 for t in tpt.iterate_critical_trace_in():
 if t.is_gate:
 path_d['gate_delay'] += t.delay()
 elif t.is_wire:
 path_d['wire_delay'] += t.delay()
 return path_d

async def handle_msg(conn, path):
 async for msg_d in conn:
 try:
 res_d = aggregate_path_data(msg_d[‘name’])
 conn.send(res_d)
 except Exception as e:
 conn.send(json.dumps({'error': e}))

ctx = dd.read(DD_FILE)
start_server = websockets.serve(handle_msg, hostname, port)
asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()

Query DD data and compute aggregate metrics.

How do I fix it?
Multi-cycle, multi-hierarchy path example

27

Multi-latch and multi-hierarchy path

A B C

-86 ps+26 ps +90 ps

def render_path_layout(msg_d):
 pins, wires = (list(), list())
 tpt = ctx.locate_pin(msg_d['name'])
 for t in tpt.iterate_critical_trace_in():
 pins.append({ "coords": (t.pin().x(), t.pin().y(), t.pin().z()), })
 for wire in t.net().iterate_wires():
 wires.append({
 "start": [*wire.start().coords()],
 "end": [*wire.end().coords()]
 })
 return {"pins": pins, "wires": wires}

Load and stitch all data files generated from separate hierarchical components and render path coordinates.

0 c = dd.read(DD_FILE)
1 epts = [e for e in c.root_def().iterate_end_points()
2 if e.worst_slack().slack() < 0]
3 for e in epts:
4 nboxes = 0
5 path_vt = defaultdict(int)
6 for ti in e.iterate_critical_trace_in():
7 if ti.box() "# None: nboxes+=1
8 if ti.vt() "# “": path_vt[ti.vt()] +=1
9 traces.append({
10 "%{“n": nboxes, "ept": e.name() },
11 "%path_vt,
12 "%{k+’%’: v / nboxes for k,v in path_vt.items()},
13 })
14 df = DataFrame(traces)
15 df[‘slow_%’].hist()

DD, which failing data paths have slow devices?

28

“DD has been invaluable in large scale data mining to identify systemic problems.”

#
 in

st
an

ce
s

gate usage ratio

Ad-hoc analysis of
critical path gate size.

Compare hierarchy boundary
pins between two versions

Custom analysis with pandas DataFrames and matplotlib

29“DD has been invaluable in large scale data mining to identify systemic problems.”

slack (ps)

#
 in

st
an

ce
s

#
 in

st
an

ce
s

gate delay ratio

Ad-hoc analysis of
gate usage and delays.

#
 e

nd
po

in
ts

slack (ps)

en

dp
oi

nt
s

Analyze wire delays across
multiple timing corners

% delay

#
 e

nd
po

in
ts

Sl
ac

k,
 fi

le
 2

 (p
s)

Slack, file 1 (ps)

Slack, file 1 (ps)

Sl
ac

k,
 fi

le
 2

 (p
s)

Automated regression testing

30

Automated regressions report
many unexpected differences
and significant performance
degradation.

44.4

44.6 Revert PR for 44.4
Original bug remains

44.11 Commit proper fix

Src
GraphID

Dst
GraphID

CellName Delta
Fails

Macro
FOM

Macro
Fails

Detailed
Diffs

44064
(44.3)

47009
(44.4)

TEST_A Passed Passed Passed Diffs

44065
(44.3)

47010
(44.4)

TEST_B Passed Passed Passed Passed

44066
(44.3)

47011
(44.4)

TEST_C Failed Failed Failed Failed

46520
(44.3)

47439
(44.4)

TEST_D Passed Passed Passed Diffs

Result of Jenkins build #362

46520 47439 Delta

DD Read 21m 24s 908ms 25m 9s 977ms 3m 45s

Iterate Edges 4m 12s 465ms 6m 46s 682ms 2m 34s

Get Endpts 5m 45s 366ms 7m 51s 426ms 2m 6s

Analyze Timing Paths 6m 36s 729ms 11m 11s 741ms 4m 35s

Memory 73.859 GB 73.767 GB

Performance for 46520 (44.3) vs 47439 (44.4)

Debugging CPython applications

> gdb -p <pid>
(gdb) bt 3 # print backtrace
#0 0x00003fffa2a523a0 in
levelize_tpts_forward(...)
 from .../site-packages/designdata.cpython-38
powerpc64le-linux-gnu.so
(More stack frames follow...)

31

Where is this runtime coming from???
Experiment: Attach gdb debugger to running Python process in compute cluster.

Lesson Learned:
AVOID MANY CALLS TO TIME CONSUMING FUNCTIONS!

Automated regressions report
many unexpected differences
and significant performance
degradation.

44.4

44.6 Revert PR for 44.4
Original bug remains

44.11 Commit proper fix

Debugging CPython applications

32

Where is this runtime coming from???
Measure performance with Python Timer (requires successful completion)

Lesson learned:
AVOID MANY CALLS TO TIME CONSUMING FUNCTIONS!

(I): Performance Metrics:
(T): Read DD file took 46m 24s
(T): Build latch graph took 1m 11s
(T): Iterate edges and assign groups took 5m 13s
(T): Collect group summary took 10m 0s
(T): timing_info.get_path_details took 4m 30s
 (0h 0m 0.006s avg) with 42126 calls.

@Timer
def get_path_details(...):
"""aggregate path data"""

with Timer.getTimer(‘exp_a’):
 p = get_path_details(...)

Function Decorator Context Manager

Automated regressions report
many unexpected differences
and significant performance
degradation.

44.4

44.6 Revert PR for 44.4
Original bug remains

44.11 Commit proper fix

 startPointName Defs_41.5 Defs_44.4 bdly_d n_gates_d totalAdjust_d
0 XL3Q@LATC_4/QN - - - -6.0 -0.37
1 _XLQ@LATC_3/QN PI W_INVESLAT_X8M_A9TX 17.68 7.0 -0.21
2 XL2Q@LATC_4/QN - - - -6.0 -0.21
3 XL2Q@LATC_1/QN - - - -6.0 -
4 INST@LATC_8/QN - - - -6.0 -
5 INST@LATC_6/QN INVESLAT_X1M_A9TX INVESLATN_X1M_A9TS -13.85 -8.0 -24.54

44.3 vs. 44.4 (272 diffs)

44.3 vs. 44.11 (2 diffs)

 startPointName Defs_41.5 Defs_44.11 bdly_d n_gates_d totalAdjust_d
0 _XLQ@LATC_3/QN PI W_INVESLAT_X8M_A9TX 17.68 7.0 -0.21
1 INST@LATC_6/QN INVESLAT_X1M_A9TX _INVESLATN_X1M_A9TS -13.85 -8.0 -24.54

pandas DataFrame “Sparse Diff”

Automated regressions report
many unexpected differences
and significant performance
degradation.

44.4

44.6 Revert PR for 44.4
Original bug remains

44.11 Commit proper fix

def sparse_diff(dfa:DataFrame, dfb:DataFrame, cols_to_compare:list, PRIMARY_KEYS:list):
 cols_with_diffs = list()
 mdf = pandas.merge(dfa, dfb, how='outer', on=PRIMARY_KEYS)
 both_df = mdf[mdf['_merge']"&'both']
 for c in cols_to_compare:
 if is_number_type(both_df[c+'_a'].dtype, both_df[c+'_b'].dtype):
 both_df[c+"_d"] = both_df[c+'_a'] - both_df[c+’_b']
 else:
 both_df[c+"_d"] = (both_df[c+'_a'] "# both_df[c+’_b'])
 .replace({True: "Diff", False: "Equal"})
 both_df.loc[((both_df[c+’_d’].abs() > 1e-6) | (both_df[c+'_d'] "& 'Equal')),
 both_df.filter(regex='^'+c+'_').columns] = '-'
 return (cols_with_diffs, both_df)

Data Compare Performance
Use a vectorized approach

1. Iterate over columns and compare all rows per-column "vector-wise"
for c in dfa.columns:
 diffs[c] = dfb[c] - dfa[c]

2. DataFrame.compare()
diffs = dfa.compare(dfb)

3. Iterate over columns and rows to compare element-wise
for c in dfa.columns:
 for i, ri_a in enumerate(dfa[c]):
 diffs[c].append(dfb[c][i] - ri_a)

4. Iterate over columns and use DataFrame.apply() to compare element-wise:
for c in cols:
 diffs[c].append(dfM.apply(
 lambda row: row[c+'_a'] - row[c+'_b'], axis=1))

34

The “vectorized” approach had more than 500x improvement
over the other loop-based methods.

Objectives

35

I.
How to build a
microprocessor:
a Big Data
Problem

II.
An efficient
CPython data
model

III.
Using Python for
data analysis

IV.
Lessons learned & Wrap-up

Open Source Community Model

36

Users
• Submit Bug Reports
• Request enhancements
Goal: Low barrier to entry

Power Users
• Provide help &

answer questions
• Create prototypes
Goal: Easy to contribute

Influence

Maintainers
• Support & maintain

system
• Set project strategy
Goal: Long-term
engagement

Engagement
Time

Democratized Data Analysis

“DD makes it
practical for
ordinary engineers
to perform their
own analysis
without specialized
EDA help!”

37

Timing
Visualizer

Jupyter
Prototypes

Custom
Scripts

Ask
Questions

Receive
Feedback

Dev
Team

Build
Features

Provide
Support

Timing
Takedown

Power
Users

Active
Users

?
Weekly

Interlock

37

38

I want this!
How do I

get it? “I TOLD THEM WE
ALREADY GOT ONE.”

39

Make one!
Here are some references to help you get started.

Learn Python!
Learn C or C++!
Basic Concepts, Syntax, Grammar

Learn CPython!
Create a C / C++ Extension Module

Python Standard Library
https://docs.python.org/3/library/index.html

The Python Tutorial
https://docs.python.org/3/tutorial/index.html

C and C++ Standard Library
https://en.cppreference.com/w/
C++ Tutorial
https://www.cplusplus.com/doc/tutorial/

CPython: Defining Extension Types
https://docs.python.org/3/extending/newtypes_tutorial.html

https://docs.python.org/3/library/index.html
https://docs.python.org/3/tutorial/index.html
https://en.cppreference.com/w/
https://www.cplusplus.com/doc/tutorial/
https://docs.python.org/3/extending/newtypes_tutorial.html

What have we
learned?

40

Significant reduction in memory footprint

Enables data-driven design using a complete data model

A Python interface allows engineers to apply existing
methods from Data Science and focus on the hard problems!

41

DD IS A GAME CHANGER!

42

